
Quantifying Socioeconomic Impact of a Tornado
by Estimating Population Outmigration as a
Resilience Metric at the Community Level

Hassan Masoomi, S.M.ASCE1; John W. van de Lindt, F.ASCE2; and Lori Peek, Aff.M.ASCE3

Abstract: Policymakers, community leaders, engineers, and researchers have gained interest in understanding tornado-resilient buildings,
in part because of the number of deadly and destructive tornadoes over the last decade. In addition to direct losses, such as deaths and
damages, tornadoes may also cause many indirect losses as a result of the highly coupled networks within communities. When networks are
disrupted, this can cause population outmigration, which, if significant and long-lasting enough, may exacerbate a community’s indirect
socioeconomic losses over time. In this study, a community was coarsely modeled with its physical-socioeconomic attributes to study
population outmigration as a community resilience metric. In this regard, recovery of affected physical networks (i.e., electric power net-
work, water network, and buildings) in the wake of a tornado was investigated and linked to students, household residents, and employees as
socioeconomic agents within the community. The probability of outmigration for each household was assessed based on the probability that
these three agents in the household are affected over a prescribed time period from the occurrence of the hazard to the full restoration of the
community. Finally, the potential population outmigration for the community was assessed by aggregating all the households in the com-
munity. The results of such an analysis can be used as a decision-making tool to prioritize hardening of existing infrastructure in a com-
munity or optimize master planning of new communities and demonstrates the importance of physical-socioeconomic interactions in
resilience studies. DOI: 10.1061/(ASCE)ST.1943-541X.0002019. © 2018 American Society of Civil Engineers.

Author keywords: Tornado; Population outmigration; Population dislocation; Resilient community; Social disruption; Master-planned
community.

Introduction

Policymakers, community leaders, engineers, and researchers have
expressed growing concern for extreme natural hazard events and
the resulting loss of life, property, and economic vitality. One such
hazard is supercell-spawned tornadoes that can be in excess of 1 km
(0.62 miles) wide and often have long tracks that can pass through
an entire community. Recent examples of such events include the
Tuscaloosa, Alabama (2011); Joplin, Missouri (2011); and Moore,
Oklahoma (2013) tornadoes.

When considering natural hazards in the United States over the
last 25 years, tornadoes have caused the third highest number of
fatalities, only surpassed by floods and lightning, and the third
highest in total dollar losses, just after floods and hurricanes
(Boruff et al. 2003). Although the probability that a tornado strikes
a particular area of a community is quite low, the consequences can

be severe since communities are made up of coupled networks
and any malfunction in a part of a network can threaten the func-
tionality of other parts of that network, as well as other networks.
Therefore, the functionality of a building depends not only on its
own physical performance but also on its supporting networks, in-
cluding electric power and water. Any disruption in a network can
threaten the building occupancy and business continuity. This, in
turn, may result in indirect economic losses and population out-
migration, two key metrics in assessing the resilience of a commu-
nity following a disruption.

A resilient community is one that has planned for potential haz-
ards in order to be able to resist, absorb, and adjust to changing
conditions, as well as to return to a level of normalcy within a rea-
sonable time following a disaster (Bruneau et al. 2003; Alexander
2013; Platt et al. 2016). A number of metrics have been introduced
to represent resilience [e.g., (Bruneau et al. 2003; Bruneau and
Reinhorn 2007; Reed et al. 2009; Attoh-Okine et al. 2009;
Omer et al. 2009; Henry and Ramirez-Marquez 2012; Ouyang
et al. 2012; Ayyub 2014, 2015)]. These metrics have been used
in several studies in order to quantify the resilience of, for example,
healthcare facilities [e.g., (Cimellaro et al. 2010)]; water networks
[e.g., (Chang and Shinozuka 2004); electric power networks
[e.g., (Reed et al. 2009; Ouyang and Dueñas-Osorio 2014; Nan
and Sansavini 2017)]; and transportation networks [e.g., (Pant
et al. 2014)]. In the current study, a socioeconomic resilience metric
focused on population outmigration is proposed at the commu-
nity level.

Population dislocation has been defined as a postdisaster
socioeconomic impact in which households are forced to move
for some period of time due to damage to structures and infrastruc-
ture in the wake of natural disasters (Lindell and Prater 2003;
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Mitchell et al. 2012; Xiao and Van Zandt 2011). FEMA (2003),
through their HAZUS model, proposed a model to measure
population dislocation in order to estimate the number of people
requiring short-term shelter. The model considers only structural
damage and housing type such that all residents in completely dam-
aged (i.e., damage state 4) single-family structures and completely
damaged (i.e., damage state 4) multifamily structures, as well as
90% of residents in extensively damaged (i.e., damage state 3)
multifamily structures will move after a natural disaster. Lin (2009)
modified the HAZUS model to consider socioeconomic character-
istics of households and their surrounding neighborhoods, in addi-
tion to the housing structural damage level and type in estimating
population dislocation. The modified model was implemented
in MAEviz (MAEC 2006), a loss assessment software package de-
veloped by the Mid-America Earthquake (MAE) Center and the
National Center for Supercomputing Applications (NCSA). Popu-
lation dislocation was conceptualized inHAZUS (FEMA 2003) and
MAEviz (MAEC 2006) as the households who are forced to leave
their homes following a disaster for at least some period of time
which may take into account the dislocated households during
the preimpact evacuation (Lin 2009).

According to previous disaster studies, population dislocation
is a function of several factors including housing structural damage,
housing type, disaster type, weather conditions, infrastructure
disruption, and loss of employment; these factors are further influ-
enced by socioeconomic characteristics of households and their
surrounding neighborhoods (Baker 1991; FEMA 2003; Gladwin
and Peacock 1997; Lindell et al. 2006; Whitehead et al. 2000;
Whitehead 2005). The population dislocation models used in
HAZUS (FEMA 2003) and MAEviz (MAEC 2006) consider only
two and three of the aforementioned factors, respectively, while
other factors such as infrastructure disruption and employment loss
play key roles in a households’ tendency (or decision) to dislocate.
These proposed models are reasonable as long as they are used to
estimate the number of people requiring short-term shelter. These
models, however, do not necessarily offer an accurate representa-
tion of resilience in that they only partially meet robustness as a
resilience property, while they do not consider the effect of the re-
storation process (which per se includes the other three properties
of resilience—redundancy, resourcefulness, and rapidity) in popu-
lation dislocation assessment.

The term population dislocation has been used to define the
households who stay away from their homes for any period of time,
either short term or long term. However, the purpose of the current
study is to investigate the population who outmigrate, meaning they
dislocate permanently or long enough to have a meaningful effect
on indirect economic losses. According to previous studies, the
return of households and businesses are mutually dependent
(Xiao and Van Zandt 2011). In fact, the return of households in
the market area will increase the chances for businesses to return
and vice versa. Furthermore, if the displaced households are
not included in the U.S. census, the population loss puts the com-
munity at risk of losing federal and state funding that are based on a
certain threshold for the community’s population (Xiao and Van
Zandt 2011).

In order to distinguish the current terminology used in this paper
from the definition of population dislocation used in the HAZUS
(FEMA 2003) andMAEviz (MAEC 2006) models, population out-
migration is used in this study to mean the permanent or long-term
population loss of a community as a result of households moving
because of damage to buildings, infrastructure, school closure, loss
of employment, or various combinations thereof, in the aftermath
of a natural disaster. The factors that influence population disloca-
tion also affect population outmigration. Therefore, the proposed

model is such that the disaster type, weather conditions, and
socioeconomic characteristics of households and their surrounding
neighborhoods can be included as a parameter describing the
households’ tendency toward outmigration. It is recognized that
this is a significant simplification but does not misrepresent the po-
tential inaccuracies that stem from a dearth of data on this complex
topic. In the model, population outmigration is updated during the
restoration process until the full restoration of the community is
achieved, and it can be assessed at any level (e.g., partial commu-
nity level and community level).

Illustrative Community Modeling

In order to study community resilience, a simplified community
was modeled after Norman, Oklahoma. Since the modeled commu-
nity does not take into account all aspects of a community, it is not
strictly representative of Norman, and therefore, it has been termed
pseudo-Norman in this study. Residences, businesses, school build-
ings, the water network, and the electric power network were con-
sidered in the model of pseudo-Norman.

Residential Grids

The western part of Norman, with an area of 14.5 by 12.9 km (9 by
8 miles) was studied herein as pseudo-Norman. This area includes
more than 90% of Norman’s population. The study area was di-
vided into 0.16-km2 (1=16-mi2) grids in order to coarsely define
the properties of households and businesses in pseudo-Norman
with enough detail to still perform the analyses effectively. The
number of houses in each grid were counted using Google Maps,
and the results are shown in Fig. 1(a) as a heat map.

Pseudo-Norman was estimated to have 41,254 houses, which is
comparable to 41,813 houses based on the census data in 2013
(City-Data 2016). Then, the number of occupied and unoccupied
houses, population, and the number of students at each school level
were derived from the census data for each grid and the entire city.
Thus, 37,785 occupied houses; 3,469 unoccupied houses; 4,829
elementary school students; 3,671 middle school students; 3,460
high school students; and a total population of 110,844 make up
the community of pseudo-Norman.

In order to link the residential grids to business grids (explained
later), the employees who live in each residential grid must be
associated with a place of employment (termed their workplace
hereafter) in a business grid. The business grids are shown in
Fig. 1(b). It was assumed that each occupied house in the city
has two people who are eligible to work, which means that, in total,
75,570 people who live in the city can be an employee. However,
based on the census, there is some percentage of unemployment
for each grid, which results in 71,198 employees who live in
pseudo-Norman. Yet, in the census, only 70% of these employees
(i.e., 49,848 employees) work in pseudo-Norman and the rest have
a job outside of the city. For each residential grid, those employees
who work in the city were divided into 10 groups, and each group
was assigned to a business grid. Moreover, as will be discussed
later, each residential grid is supplied by specific school buildings,
water tower(s), and an electric power distribution substation. There-
fore, residential grids are cross-dependent to business grids, the
water network, the electric power network, and school buildings
in this study. Furthermore, the median household income and
the median family income were recorded for each residential grid
to consider the household’s economic status in the resilience and
decision-making analyses.
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Fig. 1. (Color) Pseudo-Norman map showing (a) the density of residential buildings in residential grids; (b) the number of employees in business grids
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Business Grids

The number of workplaces in each grid was also approximately
counted. For each workplace, a number of employees were as-
sumed, and the number of employees for each business grid
was measured, which is depicted in Fig. 1(b), again as a heat
map. In total, 53,890 people work in pseudo-Norman, of which
49,848 employees live in the city and the rest (i.e., 4,042 employ-
ees) live outside of pseudo-Norman. As mentioned before, the cor-
responding residential grids for employees who work in a business
grid is known, which can be used to consider the influence of
affected businesses on the households and vice versa as will be
discussed later.

Each business grid in pseudo-Norman is supplied by specific
water tower(s) and an electric power distribution substation.
Therefore, business grids are cross-dependent to residential grids,
the water network, and the electric power network. Although all
the houses in pseudo-Norman were modeled as residential grids,
some of the workplaces in business grids that have critical effects
on the resilience of the community were defined separately as
points in order to be studied more thoroughly for future economic
studies. These particular workplaces include hospitals, fire depart-
ments, police departments, Walmart, shopping centers, and the
airport.

Infrastructure

The water network (WN), the electric power network (EPN),
and school buildings are considered for pseudo-Norman in this
example. Fig. 2(a) shows the water network and electric power net-
work for the city. The simplified water network includes six water
towers (WT) with different capacities and one water treatment plant
(WTP). A coverage zone was assumed for each water tower such
that a residential/business grid may be covered by more than one
water tower. The functionality of each WT depends not only on its
physical performance but also on the electric power distribution
substation, which provides electricity for its pumping station, as
well as on the functionality of the water treatment plant. Therefore,
the WN is cross-dependent with the EPN.

The EPN in this study includes 4 transmission substations
(TSS), 18 distribution substations (DSS), 123 transmission towers,
and 1,393 subtransmission towers. The major part of the EPN is
shown in Fig. 2(a). Transmission and subtransmission towers are
spaced 310 and 110 m, respectively. The electric power is trans-
ferred through buried underground distribution lines to the end
users from distribution substations. However, Norman, Oklahoma,
has overhead distribution lines, which makes the EPN more vulner-
able when subjected to tornadoes. Coverage zones for electric
power distribution substations were defined such that each
residential/business grid is supplied by only one distribution sub-
station. In other words, although there might be redundancy in pro-
viding electricity for a DSS, i.e., several (sub)transmission lines to a
DSS, there is no redundant DSS for end users. In the case of tor-
nadoes, uprooted trees may cause damages to underground electric
power distribution lines or pipelines of the water network; however,
that effect was neglected in the current study.

School buildings (SB) were modeled in the resilience analysis
since the destruction of school buildings in natural disasters can not
only cause injuries and fatalities but also substantial social disrup-
tion following the event (Fothergill and Peek 2015). As shown
in Fig. 2(b), 15 elementary schools (ES), 4 middle schools (MS),
and 2 high schools (HS) host pseudo-Norman students. The atten-
dance boundary of school buildings is also shown in Fig. 2(b) using
different colors [see Masoomi and van de Lindt (2018) for more
details], which illustrates the cross-dependency of residential grids

and school buildings. Each school building is supplied by a distri-
bution substation and one or more water tower(s). Therefore, school
buildings are cross-dependent to the WN and EPN.

Community Components’ Properties

After defining the topology of the community, the dependencies
among components, and the cross-dependencies between net-
works, the next step in the analysis was to understand how the com-
munity components behave when subjected to a simulated tornado.
In this regard, a set of tornado fragility curves corresponding to
damage states 1–4 were used to represent the performance of each
community component. Additionally, a repair time associated with
each damage state for each community component was utilized in
order to investigate the restoration process following the simulated
tornado.

Tornado Fragility Curves

The residential buildings in pseudo-Norman were categorized into
six types including one-story gable-roof wood-frame buildings
(two sizes), two-story hip-roof wood-frame buildings, two-story
gable-roof wood-frame buildings (two sizes), and mobile homes.
Furthermore, seven building types were considered in this study
to be representative of business buildings in pseudo-Norman, in-
cluding industrial buildings (two sizes) (Lee et al. 2013; Koliou
et al. 2017); tilt-up precast concrete (i.e., big box) buildings
(Koliou et al. 2017); one-story masonry buildings (three sizes);
and two-story reinforced concrete buildings.

Moreover, all school buildings in this study were assumed to
have masonry construction. High schools were assumed to be
one-story reinforced masonry and have one auditorium and two
gymnasiums (Masoomi and van de Lindt 2016), while middle
schools and elementary schools were modeled as unreinforced ma-
sonry buildings with fully grouted and ungrouted construction,
respectively. Selection of the level of grouting and reinforcement
was arbitrary in this study and intended to represent different design
code eras. One auditorium and one gymnasium were considered for
the middle schools, while elementary schools had only one long-
span multipurpose area. Fragility parameters for DS4 for the com-
ponents of the electric power network are based on the work done
by Lopez et al. (2009), while because of the lack of information,
DS1 to DS3 for substations were assumed in this study to have the
same logarithmic standard deviation as DS4, but with median wind
speed equal to 55, 65, and 80% of the median for DS4, respectively.
Moreover, it was assumed that if a transmission or subtransmission
tower experiences any structural damage in a tornado, it is replaced
with a new tower. This is consistent with the second author’s stake-
holder interviews with power company personnel. Therefore, only
one damage state (i.e., DS4) was assumed for these towers. The
fragility parameters for the water network components were as-
sumed by the authors of this study. The fragility parameters, for
damage states 1–4, are tabulated in Table 1 for all community com-
ponents utilized in this study.

Initiation Time and Repair Time

A random variable with Weibull distribution was defined in this
study for initiation time, which is the time period following a
tornado needed to clean up the debris on roadways, search and res-
cue, and inspect infrastructure to assess the extent of the damage.
It is recognized that this varies significantly, and values herein are
based on the second author’s experience with postdisaster site
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Fig. 2. (Color) (a) Electric power network and water network; (b) public school buildings in pseudo-Norman
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investigations. The statistics for initiation time are assumed and
presented in Table 2.

The occurrence of any damage state in a community component
was assumed to disturb the functionality of that component. How-
ever, in order to capture the effect of different damage states on
functionality, the damage state for each community component
was linked to a corresponding repair time. Therefore, the occur-
rence of a greater damage state in a component means it will take

more time to repair, and therefore, it will be nonfunctional for a
longer time period.

Table 3 presents the repair time statistics for the community
components for damage states 1–4, which are based on a
Weibull distribution. The repair time values for buildings, substa-
tions, water towers, and the water treatment plant were extracted
from FEMA (2003), but a Weibull distribution was fit to the
corresponding normal distribution prescribed in FEMA (2003)
due to the fact that time is a non-negative variable. Moreover,
the values related to DS3 and DS4 for buildings were modified
from FEMA (2003) based on the second author’s experience with
postdisaster site investigations and recovery process. In addition,
the permitting time for buildings and repair time for electric power
towers were assumed by the authors based on past tornado
observation.

Table 3. Repair Time Statistics for Community Components

Network Component

DS1 DS2 DS3 DS4

Mean (days) COV Mean (days) COV Mean (days) COV Mean (days) COV

Residential buildings Repair time 5 0.2 20 0.2 90 0.2 180 0.2
Permitting time 2 0.5 7 0.5 14 0.5 30 0.5

Workplace buildings Repair time 5 0.2 20 0.2 90 0.5 180 0.5
Permitting time 2 0.5 5 0.5 10 0.5 30 0.5

School buildings Repair time 5 0.2 20 0.2 180 0.2 730 0.2
Permitting time 2 0.5 10 0.5 30 0.5 30 0.5

Electric power
network

Transmission substation
and distribution substation

1 0.5 3 0.5 7 0.5 30 0.5

Transmission tower — — — — — — 2 0.5
Subtransmission tower — — — — — — 1 0.5

Water network Water tower 1.2 0.35 3.4 0.7 104 0.7 165 0.7
Water treatment plant 0.9 0.35 1.9 0.6 36 0.7 98 0.6

Table 1. Fragility Parameters for the Community Components Used in This Study

Network Component

DS1 DS2 DS3 DS4

Median
[m/s (mph)] ξ

Median
[m/s (mph)] ξ

Median
[m/s (mph)] ξ

Median
[m/s (mph)] ξ

Residential
buildings

Small, one-story 41.1 (91.9) 0.11 49.3 (110.3) 0.11 52.5 (117.4) 0.11 54.8 (122.6) 0.12
Small, two-story 45.4 (101.6) 0.17 52.3 (117.1) 0.14 54.1 (120.9) 0.12 60.6 (135.5) 0.12
Medium, one-story 33.2 (74.3) 0.10 37.9 (84.9) 0.10 45.7 (102.3) 0.10 49.1 (109.8) 0.10
Medium, two-story 37.2 (83.1) 0.15 40.7 (91.1) 0.13 44.3 (99.2) 0.12 48.8 (109.1) 0.14
Large, two-story 38.2 (85.4) 0.13 42.0 (94.0) 0.11 47.9 (107.1) 0.10 49.5 (110.7) 0.10
Mobile home 35.5 (79.5) 0.09 42.2 (94.4) 0.09 49.2 (110.0) 0.11 52.7 (117.8) 0.12

Workplace
buildings

Small industrial 29.8 (66.7) 0.08 35.7 (79.8) 0.05 38.7 (86.5) 0.06 43.2 (96.5) 0.06
Large industrial 28.9 (64.7) 0.08 36.8 (82.3) 0.09 69.1 (154.5) 0.11 77.1 (172.4) 0.10
Big-box 34.0 (75.9) 0.09 41.1 (91.8) 0.08 65.0 (145.5) 0.10 76.3 (170.7) 0.10
Small unreinforced masonry 31.3 (70.1) 0.09 44.5 (99.5) 0.09 51.2 (114.4) 0.11 64.4 (144.0) 0.23
Medium unreinforced masonry 39.1 (87.4) 0.09 47.2 (105.6) 0.09 52.7 (117.9) 0.10 79.4 (177.7) 0.12
Large reinforced masonry 40.6 (90.9) 0.09 47.2 (105.6) 0.11 52.7 (117.9) 0.10 80.2 (179.5) 0.12
Two-story reinforced concrete 32.3 (72.2) 0.08 40.6 (90.9) 0.09 48.2 (107.8) 0.08 56.0 (125.2) 0.14

School
buildings

High school 41.5 (92.8) 0.09 46.3 (103.5) 0.11 52.7 (117.9) 0.10 79.4 (177.7) 0.13
Middle school 40.6 (90.9) 0.09 47.2 (105.6) 0.11 52.7 (117.9) 0.10 70.4 (157.6) 0.12
Elementary school 39.1 (87.4) 0.09 47.2 (105.6) 0.09 50.6 (113.3) 0.13 60.6 (135.6) 0.22

Electric power
network

Transmission substation
and distribution substation

33.4 (74.8) 0.20 39.5 (88.4) 0.20 48.6 (108.8) 0.20 60.8 (136.0) 0.20

Transmission tower — — — — — — 60.8 (136.0) 0.12
Subtransmission tower — — — — — — 55.9 (125.0) 0.12

Water network Water tower 34.4 (77.0) 0.15 40.7 (91.0) 0.15 50.1 (112.0) 0.15 62.6 (140.0) 0.15
Water treatment plant 36.9 (82.5) 0.15 43.6 (97.5) 0.15 53.6 (120.0) 0.15 67.1 (150.0) 0.15

Note: ξ = log-standard.

Table 2. Statistics for Initiation Time

EF scale EF0 EF1 EF2 EF3 EF4 EF5

Mean (days) 0.2 0.4 0.8 1.5 2.0 3.0
COV 0.5 0.5 0.5 0.5 0.5 0.5
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Tornado Path Simulation

The gradient method (Standohar-Alfano and van de Lindt 2014;
Masoomi and van de Lindt 2018, 2017) was used in this study to
simulate the tornado path. A tornado path is defined by its center
coordinate, direction, length, and width. Although each of these
parameters can be considered as a random variable, only tornado
path length and width were considered as random variables in
the current study with the statistics presented in Table 4. Since
the tornado path length and width are correlated random variables
with known marginal distributions, the Gaussian copula model
(Limbourg et al. 2007) was utilized in this study in order to

generate the correlated random deviates. An EF4 tornado path with
randomly generated length and width, based on the statistics pro-
vided in Table 4, is shown as an example in Fig. 3. All the simulated
tornado paths in this study had the same direction and center point
shown for the EF4 tornado in Fig. 3 but had random width and
length based on the statistical distributions provided in Table 4
for each EF scale.

Restoration Analysis

Monte Carlo simulation was conducted in this study to inves-
tigate the restoration and resilience analyses for pseudo-Norman

Table 4. Distribution Parameters for Tornado Path Length and Width

EF scale

Marginal Weibull parameters

Correlation
coefficient

Length [km (mi)] Width [km (mi)]

Scale parameter (A) Shape parameter (B) Scale parameter (A) Shape parameter (B)

EF0 1.155 (0.718) 0.675 0.041 (0.025) 1.043 0.225
EF1 4.299 (2.671) 0.727 0.093 (0.058) 0.943 0.250
EF2 10.484 (6.514) 0.796 0.188 (0.117) 0.912 0.253
EF3 25.533 (15.865) 1.031 0.420 (0.261) 1.004 0.180
EF4 43.448 (26.997) 1.117 0.703 (0.437) 1.150 0.307
EF5 61.274 (38.074) 1.291 0.921 (0.572) 1.423 0.367

Fig. 3. (Color) Simulated EF4 tornado path through pseudo-Norman
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subjected to tornadoes with a path center and direction as shown in
Fig. 3. The analysis was performed for each EF scale tornado with
10,000 random samples of the tornado path with correlated widths
and lengths. The fundamental steps of the present study are sum-
marized in Fig. 4. For each tornado path sample, the in-path com-
munity components were identified, with the associated tornado
intensity acting on them based on their location through the path.
Then, in order to simulate the damage level (i.e., no damage, DS1,
DS2, DS3, or DS4) for each in-path component, a random deviate,
generated based on the standard uniform distribution, was com-
pared to the probabilities for DS1 to DS4 at the tornado intensity
acting on the component. After determining the damage level for
each component, their intrinsic failure status is available, which is
either failed (0 for components with damage level of DS1, DS2,
DS3, or DS4) or not failed (1 for components without any dam-
age). Moreover, since it was assumed that the occurrence of any
DS results in the failed status (0) for a component, in order to
capture the effect of different damage levels in the analyses, repair
and permitting times were assigned to each damaged component
based on its damage level and the statistics provided in Table 3.
The occurrence of a greater damage state in a component means it
will take more time to repair, and therefore, it will be nonfunc-
tional for a longer period of time. In other words, damage levels
were essentially translated into the time domain for restoration
analysis and a higher damage level results in a longer repair
time.

The intrinsic failure event for a component is defined as the fail-
ure based on its own physical damage level experienced under a
simulated tornado, which in this study is considered to be either
failed (0 for components with damage level of DS1, DS2, DS3,
or DS4) or not failed (1 for components without damage). Then,
based on the intrinsic failure status of all the community compo-
nents, as well as their dependencies and cross-dependencies, the
extrinsic failure status and functionality status can be found for
each component. The extrinsic failure event for a component is de-
fined as the failure that results when interacting components out-
side of the component are considered either within its own network
or other networks in the community. The functionality failure event
for a component is the union of the intrinsic and extrinsic failure
events for that component, which can be expressed as

Ffnc ¼ Fint ∪ Fext ð1Þ
where Ffnc, Fint, and Fext = functionality, intrinsic, and extrinsic
failure events for a component, respectively.

A specified performance index at a network level or at the com-
munity level can be assessed when the functionality status of all
community components is known. As will be discussed later,
the restoration process is simulated by updating the specified per-
formance index over time steps after the simulated tornado until full
restoration of the community is achieved. In the restoration analy-
sis, it was assumed that the repair process of all networks can be
started simultaneously immediately after the initiation time.

Fig. 4. Steps toward the restoration and population outmigration analyses and the flowchart for the restoration analysis
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Electric Power Network

The electric power network plays a substantial role in the vitality
of a community in that the functionality of all other networks de-
pends on the availability of electric power. Many critical facilities
such as hospitals and police stations do have generators, but this
particular subcomponent was neglected in the present study. The
focus was on the methodology development to examine restoration
with interdependencies and particular cross-dependencies between
sectors in place. The EPN in this study has underground distribu-
tion lines, which are assumed to be undamaged from a tornado.
Therefore, the electric power distribution substations (DSS) are
the supplier nodes for demand nodes of other networks, which
means the functionality status of DSSs dictates the extrinsic failure
status of demand nodes. The extrinsic failure status and function-
ality status of each DSS were investigated by considering the
dependency among the EPN components. An adjacency matrix
was used to find all the paths that transfer electricity to each
DSS. The extrinsic failure status is 0 if all the paths that end at
the DSS have at least one failed component; otherwise, the status
is 1, which can be expressed mathematically as

P
�
FDSSi
fnc

�
¼ P

�
FDSSi
int ∪ FDSSi

ext

�
¼ P

�
FDSSi
int ∪

�
∩n
j¼1

F
pathj
fnc

��

ð2Þ
where FDSSi

fnc , FDSSi
int , and FDSSi

ext = functionality, intrinsic, and extrin-
sic failure events for the distribution substation i, respectively, and
F
pathj
fnc = functionality failure event of the path j, which provides

electricity for the DSSi.
In this study, a constraint for available recovery resource units,

as well as a recovery priority, was considered in the restoration
process of the EPN, while all the damaged components in the
other networks were assumed to be repaired with no constraint
or prioritization rules. Five available resource units, r, as generic
work teams, including repair crews, equipment, and replacement
components, were considered for assignment to damaged compo-
nents in the EPN (Ouyang et al. 2012). Moreover, the recovery
priority in the EPN was considered such that a DSS with a higher
demand has to be restored first. Since there are redundancies in

some DSSs, the path with the shortest recovery time was selected
to be restored first. The restoration process for the EPN is ex-
plained in detail by Masoomi and van de Lindt (2018). The per-
formance index for the EPN was defined as the percentage of the
community demand being supplied by the EPN. A Monte Carlo
simulation was implemented to obtain the average performance of
the EPN in the restoration process, which is shown in Fig. 5(a) for
all EF scales.

Water Network

In the water network (WN), the water towers (WT) are the supplier
nodes. Each WT has a pumping station that links the WN to the
supplier nodes in the EPN (i.e., the DSSs). The functionality of
the water treatment plant (WTP) has a direct effect on the extrinsic
failure status of the water towers. Therefore, the functionality fail-
ure probability for the WTs can be expressed as

P
�
FWTi
fnc

�
¼ P

�
FWTi
int ∪ FWTi

ext

�
ð3Þ

FWTi
ext ¼ FWTP

fnc ∪ F
DSSj
fnc ¼

�
FWTP
int ∪ FWTP

ext

�
∪ F

DSSj
fnc ð4Þ

where FWTi
fnc , F

WTi
int , and FWTi

ext = functionality, intrinsic, and extrinsic
failure events for the water tower i, respectively, and FWTP

fnc , FWTP
int ,

and FWTP
ext = functionality, intrinsic, and extrinsic failure events for

the water treatment plant, respectively. FWTP
ext is equivalent to the

functionality failure event for the DSS that feeds the WTP, and

F
DSSj
fnc is the functionality failure event for the distribution substa-

tion that feeds WTi.
The performance index for the water network is defined as the

percentage of the community demand being supplied by the WN.
The average performance of the WN following the tornado is
shown in Fig. 5(b) for all EF scales. For the EPN and WN, there
exist portable substations and portable water treatment systems, re-
spectively. At this time, these are not being included in the analysis
but may be considered in future studies.

Fig. 5. Restoration curves for (a) electric power network and (b) water network after tornadoes with the path center and direction shown in Fig. 3 and
with different intensities
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School Network

The functionality of a school building was modeled to be a function
of its own physical performance, as well as the availability of both
water and electric power. Electric power is provided for a compo-
nent by one specific distribution substation. However, it was
assumed that the water can be delivered to a component from sev-
eral water towers, i.e., some level of redundancy. The pressure in
pipelines was not considered in the determination of availability of
water for a component. It was assumed that the water demand for a
component was not satisfied under the condition that all water tow-
ers capable of supplying that component lost functionality. There-
fore, the functionality failure probability for a school building (SB)
can be defined as

P
�
FSBi
fnc

�
¼ P

�
FSBi
int ∪ FSBi

ext

�
ð5Þ

FSBi
ext ¼ F

DSSj
fnc ∪

�
∩k¼n

k¼1
FWTk
fnc

�
ð6Þ

where FSBi
fnc, F

SBi
int , and FSBi

ext = functionality, intrinsic, and extrinsic

failure events for school building i, respectively; F
DSSj
fnc = function-

ality failure event for the distribution substation that feeds SBi; and
FWTk
fnc = functionality failure events for the n water towers that pro-

vide water for SBi.
The performance index for the school network is defined as the

percentage of a community’s students that can be served by the
school network. The average performance of the school network
during its restoration process is shown in Fig. 6(a) for all EF scales.
Moreover, the percentage of affected students in each residential
grid (RG), PSðt;RGiÞ, was calculated and recorded during the re-
storation process in order to be considered in the population out-
migration analysis. An affected student is defined herein as a
student whose school is nonfunctional.

Residential Buildings

The functionality of a residential building (RB) is considered the
sameway as the school building, which is expressedmathematically

in Eqs. (5) and (6). A community-level performance index for the
residential buildings is defined as the percentage of functional
residential buildings. As mentioned before, pseudo-Norman has
41,254 residential buildings, of which 37,785 buildings are occu-
pied and the rest are unoccupied. The average performance of com-
munity residential buildings during the community restoration
process was assessed and is shown in Fig. 6(b). For a tornado path
with the position shown in Fig. 3 through pseudo-Norman, only a
few unoccupied residential buildings (e.g., 25 unoccupied buildings
on average for an EF4 tornado) are located in the tornado path.
Therefore, the restoration curves shown in Fig. 6(b) appear the same
for all the residential buildings as well as only the occupied residen-
tial buildings. Furthermore, the percentage of affected (i.e., nonfunc-
tional) occupied residential buildings for each RG, PORðt;RGiÞ,
was calculated and recorded during the restoration process in order
to be considered in the population outmigration analysis. The level
of structural damage is one of the factors that affects population dis-
location and outmigration. Therefore, the percentage of occupied
residential buildings in each damage state can be calculated and
recorded for each residential grid at this stage in order to better es-
timate the population outmigration. However, in the current study,
this was neglected, and the occurrence of any damage state was
assumed to result in a nonfunctional building in order to focus more
on the methodology.

Workplace Buildings

A workplace building (WB) is defined herein as any building
type that can employ residents of pseudo-Norman, which has
the same functionality failure probability as expressed in Eqs. (5)
and (6). A community-level performance index for the workplace
buildings is defined as the percentage of employees who work in
pseudo-Norman and are not affected by the loss of functionality of
workplace buildings. The average performance during the commu-
nity restoration process was evaluated and is shown in Fig. 8(a).
Moreover, the percentage of affected employees who live in each
RG, PEðt;RGiÞ, was calculated and recorded during the restoration
process in order to be considered in the population outmigration
analysis. An affected employee is defined herein as an employee
whose workplace is nonfunctional.

Fig. 6. Restoration curves for (a) school network and (b) residential buildings after tornadoes with the path center and direction shown in Fig. 3 and
with different intensities
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Businesses Continuity

Although the performance index defined above in the workplace
buildings’ restoration description can be used to outline an eco-
nomic resilience metric, perhaps a better index may be used to ex-
press business continuity at the community level. In this regard,
business continuity was linked not only to the functionality of
workplace buildings but also to the employees whose house was
physically damaged (e.g., DS1 to DS4) during the tornado.

Fig. 7 sheds light on the cross-dependencies between residential
grids and business grids. For example, 70% of the employees
whose houses are located in the residential grid marked with a
black star in Fig. 7(a) work in a workplace located in the business
grids marked with white stars in Fig. 7(b), and the other 30% work
outside of the city. Moreover, the employees who work in the
business grid marked with a white circle in Fig. 7(b) live in a
house located in the residential grids marked with black circles
in Fig. 7(a). Some of the employees who work in a business grid
may live outside of the city.

The mean number of employees who work in business grid
j (BGj) and whose house experienced damage (i.e., DS1 to DS4),
can be expressed as

NEðBGjjdamaged houseÞ

¼
X

i¼all RG

��
nEðRGi → BGjÞ

TnEðRGiÞ
��

nDORðRGiÞ
nORðRGiÞ

�
TnEðRGiÞ

�
ð7Þ

where nEðRGi → BGjÞ = number of employees who live in resi-
dential grid i and work in business grid j; TnEðRGiÞ = total number
of employees who live in residential grid i; nDORðRGiÞ = number of
damaged occupied residential buildings (i.e., DS1-DS4) in residen-
tial grid i; and nORðRGiÞ = total number of occupied residential
buildings in residential grid i.

Then, based on the nonfunctional workplaces in business grid j
and the number of employees for each workplace, the number of
employees whose workplace is nonfunctional was calculated,
NEðBGjjnonfunctional workplaceÞ. Therefore, the affected busi-
nesses were defined based on the calculation of the number of em-
ployees whose workplace is nonfunctional or whose house is
damaged. The probability that an employee, E, in business grid
j is influenced by either a damaged house (DH) or nonfunctional
workplace (nfncWP) can be calculated as

P
�
E
BGj

nfncWPorDH

�
¼ P

�
E
BGj

nfncWP ∪ E
BGj

DH

�

¼ P
�
E
BGj

nfncWP

�
þ P

�
E
BGj

DH

�

− P
�
E
BGj

nfncWP

�
· P

�
E
BGj

DH

�
ð8Þ

P
�
E
BGj

nfncWP

�
¼ NEðBGjjnonfunctional workplaceÞ

TnEðBGjÞ
ð9Þ

P
�
E
BGj

DH

�
¼ NEðBGjjdamaged houseÞ

TnEðBGjÞ
ð10Þ

where PðEBGj

nfncWPÞ = probability that an employee in business

grid j (BGj) is affected by a nonfunctional workplace; PðEBGj

DH Þ =
probability that an employee in BGj is affected by a damaged
house; NEðBGjjnonfunctional workplaceÞ = number of employees
in BGj who are affected by a nonfunctional workplace;
NEðBGjjdamaged houseÞ = number of employees in BGj who

are affected by a damaged house; and TnEðBGjÞ = total number
of employees who work in BGj.

Then, the business continuity at the community level, which is
presented in Fig. 8(b), can be calculated as

Business Continuity

¼ 1 −
P

j¼all BG

h
TnEðBGjÞ · P

�
E
BGj

nfncWPorDH

�i
TnEðpseudo-NormanÞ ð11Þ

where TnEðBGjÞ = total number of employees who work in BGj;

E
BGj

nfncWPorDH = probability that an employee in BGj is affected by
either a damaged house or a nonfunctional workplace; and
TnEðpseudo-NormanÞ = total number of employees who work
in pseudo-Norman. Of course, some employees with a damaged
house may still report to their place of employment. At this time
in the analysis development, this is neglected, but it will be exam-
ined in future studies.

Population Outmigration

Population dislocation, and therefore population outmigration, may
occur because of housing structural damage, housing type, disaster
type, weather conditions, infrastructure disruption, loss of employ-
ment, and myriad other socioeconomic characteristics of individ-
uals and households (Baker 1991; Gladwin and Peacock 1997;
Whitehead et al. 2000; Whitehead 2005). In this study, for each
household in a residential grid, three parameters were considered
to potentially stimulate a household to leave the city with some
probability assigned to each and their combinations: (1) affected
house (i.e., a nonfunctional house as defined earlier); (2) affected
employee (i.e., an employee member of the household whose work-
place is nonfunctional); and (3) affected student (i.e., a student
member of the household whose school is nonfunctional). These
three parameters include building structural damage; disruption
of infrastructure (i.e., electric power network, water network,
and school network); and employment loss. Based on these three
parameters, a household experiences one of eight states (i.e., S1–
S8, which are mutually exclusive and collectively exhaustive), as
shown in Fig. 9. Each state leads to a different probability of out-
migration for the household, which is a function of time, the level
of structural damage, housing type, disaster type, weather condi-
tions, household income, race/ethnicity, tenancy status, and so on.
For example, a household is assumed to have a greater tendency to
outmigrate when state S8 occurs than state S3, and the longer the
household sustains a state, the more likely they are to outmigrate.
Households residing in multifamily structures are more prone to
dislocation (and therefore outmigration) than those living in single-
family dwellings, and this vulnerability is even more significant for
households inhabiting mobile homes (Peacock and Girard 1997;
Lin 2009).

The disaster type can further influence the household’s proba-
bility of outmigration in that, for example, in the case of a flood,
households may have to leave their house if it is in the flooded area
regardless of the level of damage. Population outmigration can be
exacerbated by weather conditions since utility disruption affects
the ability to heat or cool the house. In very cold or hot weather
conditions, this may significantly decrease the tolerance of house-
holds and therefore increase their probability of dislocation fol-
lowed by outmigration. A household’s socioeconomic status is
one of the factors that influences the household’s probability of out-
migration. Households with higher socioeconomic status have
more potential for mobility following a natural disaster, meaning
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Fig. 7. (Color) Example of cross-dependencies between residential grids and business grids: (a) residential grids; (b) business grids
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they have more resources to both choose to relocate elsewhere,
as well as to rebuild should they so choose (Drabek and Key
1984; Weber and Peek 2012). Moreover, tenancy status of house-
holds was found to have an inconsistent effect on household
dislocation/outmigration (Peacock and Girard 1997; Belcher and
Bates 1983). All the aforementioned factors should be considered
in the household’s probability of outmigration. However, in the
present study, a normal distribution only as a function of time
was assumed for the conditional probability of outmigration for
each state, given that the household has not outmigrated until that
time, which is shown in Fig. 10, in order to illustrate the method-
ology to quantify population outmigration. Even if a household is
not affected by the three parameters (affected house, affected em-
ployee, and affected student), i.e., the state S1, a very low constant
probability was considered for the household outmigration.

For each RG, the percentage of affected students, PSðt;RGiÞ;
the percentage of affected occupied residential buildings,

PORðt;RGiÞ; and the percentage of affected employees,
PEðt;RGiÞ, were recorded as a function of time during the resto-
ration analysis. Then, the probability that household k (Hk) in
residential grid i (RGi) experiences a state can be calculated at
time t as

PS1ðt;Hk;RGiÞ ¼ ð1 − PORðt;RGiÞÞ×ð1 − PSðt;RGiÞÞnSðHkÞ

× ð1 − PEðt;RGiÞÞnEðHkÞ ð12Þ

PS2ðt;Hk;RGiÞ ¼ ð1−PORðt;RGiÞÞ× ½1− ð1−PSðt;RGiÞÞnSðHkÞ�
×ð1−PEðt;RGiÞÞnEðHkÞ ð13Þ

Fig. 8. Restoration curves for (a) workplace buildings and (b) business continuity after tornadoes with the path center and direction shown in Fig. 3
and with different intensities

Fig. 9. Venn diagram showing the possible states of a household after
an event

Fig. 10.Household’s conditional probability of outmigration as a func-
tion of time given that state Sj occurred for the household and, also, the
household has not outmigrated until time t
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PS3ðt;Hk;RGiÞ ¼ ðPORðt;RGiÞÞ × ð1 − PSðt;RGiÞÞnSðHkÞ

× ð1 − PEðt;RGiÞÞnEðHkÞ ð14Þ

PS4ðt;Hk;RGiÞ ¼ ðPORðt;RGiÞÞ ×
�
1 − ð1 − PSðt;RGiÞÞnSðHkÞ	

× ð1 − PEðt;RGiÞÞnEðHkÞ ð15Þ

PS5ðt;Hk;RGiÞ ¼ ð1 − PORðt;RGiÞÞ×ð1 − PSðt;RGiÞÞnSðHkÞ

×
�
1 − ð1 − PEðt;RGiÞÞnEðHkÞ	 ð16Þ

PS6ðt;Hk;RGiÞ ¼ ð1−PORðt;RGiÞÞ× ½1− ð1−PSðt;RGiÞÞnSðHkÞ�
× ½1− ð1−PEðt;RGiÞÞnEðHkÞ� ð17Þ

PS7ðt;Hk;RGiÞ ¼ ðPORðt;RGiÞÞ×ð1 − PSðt;RGiÞÞnSðHkÞ

× ½1 − ð1 − PEðt;RGiÞÞnEðHkÞ� ð18Þ

PS8ðt;Hk;RGiÞ ¼ ðPORðt;RGiÞÞ × ½1 − ð1 − PSðt;RGiÞÞnSðHkÞ�
× ½1 − ð1 − PEðt;RGiÞÞnEðHkÞ� ð19Þ

where nSðHkÞ = number of student members of the household
k and nEðHkÞ = number of employee members of the household k.

Therefore, based on the conditional probability of outmigration
for each state shown in Fig. 10, the conditional probability of out-
migration for the household k at time t given that they have not
outmigrated until time t (condition A) can be calculated as

PPOjAðt;Hk;RGiÞ ¼
X
j

½PPOjSj;AðtÞPSjðt;Hk;RGiÞ� ð20Þ

where PSjðt;Hk;RGiÞ = probability that household k in residential
grid i is in state Sj at time t and PPOjSj;AðtÞ = household’s condi-
tional probability of outmigration at time t if state Sj occurred for
the household and the household has not outmigrated until that
time, which is shown in Fig. 10.

In order to calculate the probability of outmigration for house-
hold k, PPOjAðt;Hk;RGiÞ serves as the hazard function for the
household outmigration in time-dependent reliability analysis.
Therefore, the probability of outmigration for household k in
(0,t] can be expressed as

PPOðT ≤ t;Hk;RGiÞ ¼ 1 − exp

�
−
Z

t

0

PPOjAðξ;Hk;RGiÞdξ
�

ð21Þ

Finally, the mean percentage of population outmigration for
pseudo-Norman can be expressed as

POðT ≤ t; pseudo-NormanÞ

¼
P

i

P
k½nHk

· PPOðT ≤ t;Hk;RGiÞ�
Population ðcityÞ ð22Þ

wherenHk = number of people in household k and Population (city) =
total number of people in pseudo-Norman.

The population outmigration analysis was performed for
pseudo-Norman subjected to tornadoes with different inten-
sities and the path center and direction shown in Fig. 3. The aver-
age results of Monte Carlo simulation analyses for population

outmigration are shown in Fig. 11 at the grid level and in Fig. 12
at the community level.

As Fig. 11 shows, although a tornado path hits only a small part
of the city (a path with the mean width and length is shown in
Fig. 11), the entire city is susceptible to the effects of the tornado
because of the dependencies and cross-dependencies across com-
ponents and networks. Fig. 11 shows that even a residential grid
outside of the tornado path might have the highest number of out-
migrated people among all the grids in the city; e.g., their place of
work and school were both destroyed and were nonfunctional for a
long period of time.

Fig. 12 shows the cumulative population outmigration (on
average) for pseudo-Norman as the percentage of the community’s
population (i.e., 110,844) following a tornado that strikes pseudo-
Norman with the path center point and direction as shown in Fig. 3.
In the case of an EF3 tornado, 2.163% of the pseudo-Norman pop-
ulation (approximately 2,400 people) out-migrate as a result of
physical-socioeconomic disruptions in the community.

Summary and Conclusion

In this study, population outmigration was defined as a socioeco-
nomic resilience metric, and a model was proposed to quantify the
metric either at the grid level or at the community level. In this
regard, an illustrative community made up of an electric power net-
work, a simplified water network, school buildings, residential
grids, and business grids were modeled, and damages to commu-
nity components resulting from a tornado were assessed. Then, the
functionality of residential buildings, school buildings, and work-
place buildings was assessed during the restoration process as a
function of the physical damage to buildings and the availability
of electric power and water. The affected students, employees,
and occupied residential buildings were linked to each household
during the restoration analysis, and the probability of outmigration
for each household was assessed at evenly spaced time periods after
the event until the full restoration of the community was achieved.
Finally, the population outmigration was measured as the product
of the number of people in the household and the probability of
outmigration for all the households in the community.

The results show that the entire city may be substantially af-
fected by a tornado even though it strikes only part of the city.
Moreover, it is possible for population outmigration to be higher
in a grid outside of the tornado path, which highlights dependencies
and cross-dependencies in and among networks. It is recognized
that the probability matrix for outmigration was assigned based
on logic and not data, so the emphasis in this paper is placed
on the methodology, understanding that an extensive postdisaster
survey would need to be conducted to complete the outmigration
probability matrix.

This study has two main implications for future studies. First,
it can be used in analyses supporting risk-informed decision mak-
ing in order to design master-planned resilient communities, as well
as upgrading a community’s buildings and/or infrastructure to
make the community more resilient to future disasters. This could,
for example, be used to understand how to better isolate or decou-
ple two or more sectors; establish redundancies; or decide whether
to focus on retrofitting schools in the public sector, businesses
and residences in the private sector, or some combination thereof.
Second, the population outmigration derived in this study can be
further utilized to update the business continuity in a community in
that these two metrics (i.e., population outmigration and business
continuity) have an inverse relationship.
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Fig. 11. (Color) Mean number of outmigrated people in each residential grid—the tornado paths with the mean length and width are shown in
each case: (a) EF0; (b) EF1; (c) EF2; (d) EF3; (e) EF4; (f) EF5
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